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ABSTRACT 
 

In this paper an efficient method is developed for the analysis of non-regular graphs which 
contain regular submodels. A model is called regular if it can be expressed as the product of 
two or three subgraphs. Efficient decomposition methods are available in the literature for the 
analysis of some classes of regular models.  

In the present method, for a non-regular model, first the nodes of the non-regular part of 
such model are ordered followed by ordering the nodes of the regular part. With this ordering 
the graph matrices will be separated into two blocks. The eigensolution of the non-regular part 
can be performed by an iterative method, and those of the regular part can easily be calculated 
using decomposition approaches studied in our previous articles. Some numerical examples 
are included to illustrate the efficiency of the new method. 
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1. INTRODUCTION 
 

In our previous papers methods are already presented for the eigensolution and finding the 
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inverse of block matrices. These matrices may arise in the adjacency or Laplacian matrices of 
the graphs [1]. The developed theorems can also be employed for structural models provided 
the necessary requirements mentioned in the theorems are fulfilled [2]. As an example, for 
some graph product and structural models these conditions are satisfied. Now we assume that 
for a given graph product or model with specified eigenvalues or inverse, some nodes or 
members are added. The main aim of the paper is the investigation of such problems. A 
special case of this model is when two graphs are connected to each other. For this purpose 
we first briefly study all those models for which the eigensolutions are available. 

Some product graphs and closed form solutions for determining their eigenvalues are introduced 
in the next section. There are other product graphs for which no closed form solution are available, 
however it is possible to calculate their eigenvalues transforming the problem into solvable forms. 
Similar to the Laplacian matrices of graphs, one comes to the stiffness matrices of some structures 
for which the eigensolution or inverse can easily be obtained. 

Now we add some node or member to such a model. For solving this problem one can use 
iterative methods. One of these methods is the condensation approach in which some of the 
degrees of freedom, denoted by s , are omitted and some others, denoted by m , are remained. 
The method of Guyan is one of the most important approaches of this class. This method is a 
static condensation in which the terms corresponding to the omitted degrees of freedom 
(DOFs) are ignored. Then to reduce the errors involved in static condensation, some 
modifications are performed in the solution of dynamic problems. One of such methods is 
introduced by Paz and in fact it is a generalized static condensation. Other methods are also 
developed in some of which the expansion of the Taylor series is employed for inverting the 
stiffness matrix. As more recent methods one can refer to those developed in [3-9]. 

Non-regular structures which can be transformed into regular ones are studied in [10]. 
Here the matrices are decomposed such that the inverse of the regular part can easily be 
obtained by the inverse of its blocks. For this purpose only a suitable ordering is needed. First 
the numbering of the nodes of the regular part is performed followed by the remaining nodes. 
This can be performed in two ways. Either some nodes and elements are added to restore the 
regularity or some nodes and members are deleted. 

In Ref. [11] first the static and dynamic analysis of repeated part of the model is performed. 
In these structures we may have two or more kinds of repetitions. Similar to the previous case 
the ordering is performed such that the stiffness and mass matrices are decomposed into block 
forms and then the inversion is carried out by inverting the regular matrices with a small 
amount of computational effort. 

The content of this paper is organized as follows: In section 2, graph products and the 
corresponding theorems are briefly presented. Then the proposed method is described in 
section 3. Numerical examples are presented in section 4. In some of these examples the 
eigenvalues and in some others the inverse of the corresponding problem are investigated. 
Section 5 concludes the paper. 

 
 

2. PRELIMINARIES 
 

Before we introduce some graph products we refer to two important matrices associated with 
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graphs. 
The adjacency matrix A of a graph: This is square matrix with dimension as the number of 

nodes of the graph. The entries of this matrix are 0 unless the two nodes corresponding to ith 
row and the jth column are connected, in which case the entry will be 1. 

The Laplacian matrix L of a graph: This matrix is defined as ADL −=  with D  is a 
diagonal matrix, where each diagonal entry is the degree of the corresponding node (the 
number of member connected to that node). 

When a sequence of n  nodes of a graph are connected to each other, we will have a path 
denoted by nP . If the first node and the last node of such a path coincide, then we will have a 
cycle, nC . 

The Kronecker product of two matrices A and B , denoted by BAS ⊗= , is a matrix the 
ijth entry of which is Ba ij  . Now we introduce three graph products. 

 1. Cartesian Product: The Cartesian product of two graphs K  and H  denoted by  
HKS ×=  is defined as follows: For a pair of nodes )u,u(u 21=  and )v,v(v 21=  in 

)H(N)K(N ×   a member uv   will exist in )S(M  if one of the following conditions hold: 
 

 
)K(Mvuandvu

or
)H(Mvuandvu

1122

2211

∈=

∈=
 (1)  

 
This means two nodes will be connected in Cartesian product if their first entries are 

identical the second entries will be connected to each other and vice versa. 
 
2. Direct Product: The direct product of two graphs K  and H  denoted by  HKS ∗=  is 

defined as follows: For a pair of nodes )u,u(u 21=  and )v,v(v 21=  in )H(N)K(N ×   a 
member uv   will exist in )S(M  if one of the following conditions hold:  

 
                                      )H(Mvuand)K(Mvu 2211 ∈∈  (2) 

 
This means two nodes will be connected in direct product if their first entries in the first 

graph and their second entries in the second graph are identical. 
 
3. Strong Cartesian Product: The direct product of two graphs K  and H , denoted by  

KS = ⊠H  is defined as follows: For a pair of nodes )u,u(u 21=  and )v,v(v 21=  in 
)H(N)K(N ×   a member uv   will exist in )S(M  if one of the following conditions hold:  
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)H(Mvuand)K(Mvu
or

)K(Mvuandvu
or

)H(Mvuandvu

2211

1122

2211

∈∈

∈=

∈=

 (3) 

 
This means that the strong Cartesian product is the combination of the previously described 

products. Having these definitions, now the theorems corresponding to the eigenvalues of the 
Laplacian matrices of these products are described: 

Let us assume M  to be as the sum of some Kronecker products, as 
 

 )BA(M
k

1i
ii∑

=

⊗=  (4) 
 
Now if the matrix P  diagonalizes all the iA s simultaneously, then it is previously shown 

that   IPU ⊗=  can also block diagonalize the matrix M . The necessary and sufficient 
condition for P  to exists is that all pairs of iA s  commute, i.e. 

 
  AAAA ijji =  (5) 

Then 
 )B)A((M);M(eig

k

1j
jjiii

n

1iM ∑
=

=
=∪= λλ  (6) 

 
In this relation, the dimension of iA  is equal to n , and that of iB  is equal to m . 
One can perform similar calculations if the matrix P  simultaneously diagonalizes the iB    

matrices, since 
 )AB()BA(

k

1i
ii

k

1i
ii ∑∑

==

⊗=⊗  (7) 
 
If iA s and iB s posses the commutativity property, then the calculations will be easier, 

because 

    )BA(eig)BA(eig
k

1i
ii

k

1i
ii ∑∑

==

⊗=⊗  (8) 
 
Another special case is when a matrix is block circulant. For this type of matrices, the 

eigenvalues can easily be obtained as described in [12]. 
 Now consider the following set of equations: 
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 BMx =  (9) 
 
It is obvious that after calculating the eigenvalues and eigenvectors of M , the set of 

equations (9) can be solved [13]. If iλ s and i}{ϕ s are the eigenvalues and eigenvectors of 

M , the introducing BB t
jj }{ϕ=  we will have: 

 

 ∑∑∑
===

===⇒=
n

1i i

t
ii

n

1i i

i
i

n

1i
iin

j

j
j B

B
yx

B
y

λ
ϕϕ

λ
ϕϕ

λ
}{}{

}{}{}{  (10) 

 
If iA s and iB s have do not posses the commutativity property with respect to 

multiplication, then for the case 2k =  one can use QZ  transformation for the solution of Eq. 
(9). This transformation is introduced in Ref. [14]. Here and also for Eq. (10), one does not 
need to calculate the stiffness matrix. 

However, one can easily find 1M −  having the eigenvalues and eigenvectors of M . Having 
the matrix V  of eigenvectors, and the matrix D  of eigenvalues in its diagonal, then 

tVDVM = . Since the eigenvalues of 1M −  are the inverse of those of M  with identical 
eigenvectors, therefore 

 t

nm

2

1

t11 V

/10
.

.
/1

0/1

VVVDM























==

∗

−−

λ

λ
λ

 (11) 

 
In this relation 1D −  can easily be obtained by finding the inverse of the diagonal entries of 

D. The eigenvector of such a matrix will be vu ⊗  in which u  is a vector that diagonalizes 

the two matrices 1A  and 2A  simultaneously, and  v   is the eigenvector of 

)B)A((M
k

1j
jjii ∑

=

= λ . 

  
 

3. THE PROPOSED METHOD 
 

In this method with transforming the matrices of graphs into block form, and employing 
dynamic condensation the eigenvalues are calculated. For simplicity a graph for which the 
eigenvalues can be calculated using the above mentioned method (or any other method) is 
denoted byS . The dimension of the matrices of this graph is denoted by s  which corresponds 
to the DOFs which is supposed to be omitted. We also assume that the primary matrices have 
dimension equal to n . 
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In general we aim at solving the following eigenvalue problem: 
  

(12) n:1i;0)BA( ii ==− Φλ    
This matrix can be decomposed into two parts havening dimensions of m  and s , where  

smn += . It is obvious s  corresponds to the part for which the inverse can be found using 
the previously developed methods. 

 

 







=
























−








0
0

BB
BB

AA
AA

s

m

ss
t
ms

msmm

ss
t
ms

msmm

Φ
Φ

λ  (13) 

 
The calculations corresponding to the eigenvalues and eigenvectors can be performed using 

the iterative approach of [5]. Summary of these calculations and application can be found in 
Ref. [11]. 

It should be noted that in structural problems the smallest eigenvalues [11] and in the graph 
Laplacian matrices the second eigenvalues are of importance. 

It can be recognized that in the present method ordering plays and import role. According 
to the above explanations, first a subgraph S  of the graph is selected. This part is selected 
such that the inverse of the corresponding matrix can be calculated. The remaining part of the 
model is denoted as M . For nodal ordering, first the nodes of M  and then the nodes of S  
are numbered.  

Here applications of this method in graph are described. One of these applications is the 
calculation of the eigenvalues of the Laplacian matrices of direct and strong Cartesian graph 
products. For these products the Laplacian matrices can be expressed as the sum of two 
Kronecker products. Defining 

 

(14) 

nmAmBmD
mBmCmBmD
mDmBmCmB

mD...
...

...mD
mBmCmBmD
mDmBmCmB

mDmBmA

)mD,mC,mB,mA(nF





































=

 

 
It should be mentioned that when this matrix is used with 3 arguments, then we will have 

0Dm = . 
In this way for the direct product we will have 
 

   )2,0,1(F)2,0,1(F)0,1,0(F)0,1,0(FM efefef ⊗+−⊗=  (15) 
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and for strong Cartesian product we have 
  

   )3,0,2(F)3,0,2(F)1,1,1(F)1,1,1(FM efefef ⊗+−−−⊗=  (16) 
 
Here both terms are in the form 2211 BABA ⊗+⊗ . However, in both terms 

1221 AAAA ≠ . Thus one can not block diagonalize using the given form. 
In Ref. [15] members were added to the four edges of the graph to perform the 

calculations. This changes 2A  and 2B  in the direct product to I2  and in strong Cartesian 
product it changes to I3 , to provide the decomposability condition. However, in Ref. [1] it is 
shown that one does not need to alter 2B   and changes on 2A   is sufficient for block 
diagonalization. 

Since the addition of members to all four edges of the graph is unnecessary and two 
opposite edges are sufficient (e.g. upper and lower edges), thus efM   can be written as 

 
 efefef )B()2,1,1(F)BA(IM −⊗−++⊗=  (17) 

 
Since in this case ffff ITTI = , therefore efM  can be diagonalized and we have 
 

    ]}B)
f

icos21(A[eig{)M(eig ee

f

1ief
π

+−∪=
=

 (18) 
 
Due to the change on the primary graph, the magnitude of 2λ  will have some 

approximation. In order to improve this approximation one can use Rayleigh’s method. In this 
method there is no need to add member to the edges of the model and one can use the 
relationships which are described in Ref. [11] for finding the eigenvalues. Details of this 
approach will be illustrated in Example 1.  

For some repeated graphs when we use this method to find the eigenvalues, the inverse of 
a special block matrix is involved in the following form, and for simplicity we denote it by R: 

 

0 0 . . 0
0

0 .
( , , ) 0 0 . .

. . .

.
0

t

t

t
n

t

t
n

A B
B A B

B A
R A B B

B
B A B

B A

 
 
 
 
 =  
 
 
 
  

 (19) 

 
In this matrix, the submatrices , , tA B B are l l×   matrices. 
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If R  contains two blocks B  and tB  in its corners, then we will have a circulant matrix and 
one can then easily obtain the eigensolution and inverse of the matrix [12]. Thus we rewrite R  
in the following form: 

 

 
0 0 0 0 0

0 0 0
0 0 0 0 0

. . .
. . . 0

0 0

t t

t t

t t

t t
n n n n n n

A B A B B B
B A B B A B

B A B B A B
R L L

B B
B A B B A B× × ×

   − 
    
    
    

′ ′′= + ⇒ = +    
    
    
    

−        

 (20) 

 
Showing the inverse of L′  by E, then we will have 
 

 [ ] { } [ ]
11 11 1R L L L I L L I EL E

−− −− −′ ′′ ′ ′ ′′ ′′ = + = + = +   (21) 

 
Exchanging the row and columns of block n  with those of block 2 in matrices L′′  and E, 

these are transformed into two block matrices:  
 

 

1

1 2

0 0
0

0.
0 0.

0 0
0 0 0

0
(0, , )

0

t

n n

t
t

B
B

L
L

B
L R B B

B

×

 −
 − 
   

= =′′    
  

 
 
  

 −
= = − − 

 (22) 

 
Where L′′  is the matrix as L′′  after the exchange of the row and column. Similar to the 
method presented in [16] and using Eq. (21), we obtain: 
 

 
[ ]

1
1 11 12 1

21 22

1 1
11 1 11 1

1
21 1 21 1 11 1

0 0
0 0 0

0 ( ) 0
( )

E EI L
I EL E E

E EI

I E L I E L
E E

E L I E L I E L I

−
−

− −

−

     
+ = +′′      

     

+  + 
= =    − +   

 (23) 

 
The inverse of the matrix L′  can be obtained using its eigenvalues, since 
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3

1

t t
i i

i
L I A H B H B A B

=

′ = ⊗ + ⊗ + ⊗ = ⊗∑  (24) 

Where H is a rotation matrix in the form: 
 

 

0 1 0 0
0 0 1 0
0 0 0 1

. .
0 . 1
1 0 0 n n

H

×

 
 
 
 

=  
 
 
 
 

 (25) 

 
Here H  is an orthogonal matrix and the matrices H  and tH are commutative with respect 

to multiplication, i.e., 
 

 t tHH H H I= =  (26) 
 
Therefore considering Eq. (6) and Eq. (24), the eigenvalues of L′   is obtained as follows: 
 

 1 1 2 2 3 31
( ) ( ) ; ( ) ( ) ( )

n

i i i i ii
eig L eig L L A B A B A Bλ λ λ

=
′ ′ ′= ∪ = + +  (27) 

 
After calculating the eigenvalues, using Eq. (11) the inverse of L′   is obtained.  
The inverse of R  can also be obtained with the following simpler approach: 
 

 

( ) ( ) 111 1 1 1 1

0 0 . . 0
0 0 0

0 0 0
0 0 0 0 . .

( , , ) 0 0 0 0
0 0 0 . . 0

. . . .

. . . .
0

( , , )

t t

t

t

t t

t

t

A B B B
B A B

B A B
I

R A B B L UVB A
I

B
B B A B

R A B B L UV L L U I VL U VL
−−− − − − −

   
   
   
   

     ′= − = −    
    

   
   
   
   

′ ′ ′ ′ ′⇒ = − = + −

 (28) 

 
From the above formula it can be seen that this kind of formulation for obtaining the 

inverse of R  requires the inversion of two matrices. One is  1I VL U−− ′  which is the same as 
11 1I E L+ , and the second one, L′ , which is the sum of three Kronecker products and its 

eigenvalues and hence its inverse can be obtained from n  eigenvalues of the matrix. 
Here the repeated matrices which do not satisfy Eq. (5) and thus are not decomposable are 

studied. Using some matrix operations, the inverse of these systems is related to the inverse of 
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some decomposable block matrices. In this way simple analytical relations are obtained for 
finding the inverse of repeating graphs. In Example 2 some of such graphs are introduced and 
investigated. 

Also there are some graphs which do not satisfy Eq. (5), however, with a proper nodal 
ordering one can identify a subgraph for the condition of decomposiblity holds, as shown in 
Example 3.  

Another application consists of connecting two graphs which is studied in Example 4. 
Another application of the present approach is studying those graphs which become a product 
graph by the addition of some members, as illustrated in Example 5. 

 
 

4. NUMERICAL EXAMPLES  
 

Example 1: In this example the aim is to find the eigenvalues of the Laplacian matrix of a 
graph in the form of strong Cartesian product. The strong Cartesian product 4P ⊠ 5P  is shown 
in Figure 1. The main problem is that the upper and lower nodes are not identical to the 
intermediate nodes and if only the intermediate nodes are considered then one can find the 
eigenvalues followed by the inverse of the corresponding matrix. Therefore for nodal ordering 
first the upper and lower nodes are labeled followed by the numbering of the intermediate 
nodes. 

 
Figure 1. The Cartesian product 5P  ⊠ 4P   and its nodal numbering 

 
Considering the above nodal ordering the Laplacian matrix is decomposed into two blocks 

as follows: 
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=

ss
t
ms

msmm

LL
LL

L  

 
Here 8m =  and 12s = . Therefore instead of calculating the eigenvalues of a matrix of 

dimension 20, only a matrix of dimension 12 is inversed together with an eigensolution of 
dimension 8. The ssL  matrix is in the following form: 

 

 )1,1,1(F)0,1,0(F)8,1,5(FI)A,B,A(F
AB0
BAB
0BA

L 43433ss −−−⊗+−⊗==















=  

 
The important point is that for inverting ssL  there is no need for direct calculations since in 

this matrix 1221 AAAA =  and eigenvalues are obtained using Eq. (6) and the inversion is 
performed employing Eq. (11). Thus we have  

 

 
[ ])1,1,1(F)0,1,0(F()8,1,5(F)I( 43i43i

3

1iL −−−+−∪=
=

λλλ  
 
In this way, instead of solving an eigenvalue problem of dimension 20, the eigenvalues of 

three matrices of dimension 4 and one of dimension 8 should be calculated. 
 
Example 2: Suppose we want to find the second eigenvalue of the Laplacian matrix of the 

graph shown in Figure 2. This graph has a repeated form and we use the dynamic 
condensation approach. As it can be seen from the figure, first the nodes of the right-hand side 
and left-hand side (non-repeated parts) are numbered followed by the nodal numbering of the 
internal nodes. 

 

  
Figure 2. A repeated graph and a suitable nodal numbering for the formation of the Laplacian 

matrix in a 2-block form 
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With the above numbering the Laplacian matrix will have the following form: 
 

 

0 0 0 0
0 0 0 0

0 0 0
0 0 0
0 0 0
0 0 0

t

t
mm ms
tt
ms ss

t

t

C B
C B

L LB A B
L

L LB A B
B A B

B B A

 
 ′ 
   

= =   
  

 
 
 

 

Where 

 

4

0
0 0 0 00 0

( , , ) , , ,
0 0 0 00 0

0

t

t t
ss ms ms mmt

B
B C

L R A B B L L L
B C

B

 
      = = = =     ′   
 
   

 
In these relations the matrices A, B , C  and tC  are 3 3×  matrices. The nodes 1 to 6 are 

shown with subscript m and the nodes 7 to 18 are denoted by subscript s. Similar to the 
previous section, in using the dynamic condensation we will need the inversion of a matrix of 
dimension ssL  (which is equal to 12 in this example) and an eigensolution problem of a 
matrix of dimension mmL   (that is equal to 6 in this example).  

Therefore we will need to find the inverse of the matrix R. For calculating this inverse one 
can use either Eqs. (20 to 27) or Eq. (28). In this example, 4n =  and  3l =  .  

As it can be seen from Eqs. (20-27), in this method instead of finding the inverse of R (of 
dimension 12), the inverse of two regular matrices 11 1I E L+   (Eq. (23)) and  L′  (Eq. (24) are 
needed. Where the first one is of dimension 6, and the second needs the eigensolution of 4 
matrices of dimension 3. 

If we use Eq. (28), then for finding the inverse of R  we need to find the inverse of two 
matrices. One matrix is 1I VL U−− ′

 
which is the same as 1I VL U−− ′

 
and in this example it is 

a 2-block matrix each block being of dimension 3. The other one is L′  which is the sum of 
three Kronecker products, and the eigenvalues and hence inversion is obtained from the 
eigenvalues of 4 matrices of dimension 3. 

Similar calculations are applicable to other repeated graphs. Examples of such cases are 
strong Cartesian products and direct products, where Eq. (5) is not applicable. Some of such 
graphs are provided in Figure 3. For the first two graphs, the nodal numbers are also shown. 
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Figure 3. Different forms of repeated graphs and suitable nodal numbering of two models 
 
Example 3: In Figure 4(a) a graph is shown which is similar to strong Cartesian product, 

and the only difference is that the crossing point are considered as nodes belonging the 
subgraph S . The remaining nodes are contained in the subgraph M . Using the 
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aforementioned numbering, the matrix ssL  will be equal to 6I4 , where I  is a unit matrix. 

Therefore 6
1

ss I
4
1L =−  and it is sufficient to calculate the eigenvlaues of a matrix of dimension 

12m = . It should be mentioned that for calculating the eigenvalues of this matrix similar to 
the previous example, one can decompose the graph into two subgraphs with 6m =  and 

6s = . For this example the second eigenvalue of the Laplacian matrix is obtained as 
7226.02 =λ .  

As an application, the eigenvector of this eigenvalue, known as the Fiedler vector, is 
obtained for Figure 2(a), and the nodal ordering is performed for reducing the profile of the 
stiffness matrix. The Fiedler vector is as 

  

}2737.0,2737.0,0,0,2737.0,2737.0,3156.0
,3074.0,1356.0,1375.0,1365.0,1375.0,1375.0,1365.0,1375.0,3156.0,3074.0,3156.0{v2

−−−
−−−−−=  

 
Ordering the nodes according to this vector the new nodal numbers is obtained as 

illustrated in Figure 4(b). 
 

  
(a) (b) 

Figure 4. (a) The graph introduced in Example 3, (b) Nodal ordering using Fiedler’s vector 
 
Example 4: In this example we want to calculate the eigenvalues of graph obtained by 

connecting two subgraphs. An example of such a graph is illustrated in Figure 5(a). One 
subgraph is the product graph 7P  ⊠ 4P  and the other one is the product graph 3P × 3P . In 
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nodal numbering one should pay special attention to the block which should be inverted and its 
eigenvalues should be calculable. Similar to the previous example, the intermediate part of the 
strong Cartesian product is considered and numbered, and the remaining nodes are number 
next. 

 

  
(a) (b) 

Figure 5.  (a) Two graphs connected to each other and the nodal numbering  (b) Partitioning  of 
the graph 

 
Therefore for this graph we have  









=

ss
t
ms

msmm

LL
LL

L  

 
Here we have 17m =  and 20s = . With this numbering and inverting a matrix of 

dimension 20, we will face an eigenvalue problem of dimension 17. The matrix ssL  we have 
the following form: 

)1,1,1(F)0,1,0(F

5100
181

0181
0016

I)A,B,A(FL 4555ss −−−⊗+



















−
−−

−−
−

⊗==  

 
In this way instead of inverting a matrix of dimension 20, one should find the eigesolution 

of 5 matrices of dimension 4 to be employed in Eq. (11). In this problem, the relationships for 
calculating of eigenvalues in [5] are used twice and 3078.02 =λ   is obtained, while the exact 
answer is 3101.02 =λ . As an application this eigenvalue is used to find the Fiedler’s vector. 
Ordering the entries of this vector, the model can be bisected such that the two obtained 
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subgraphs have identical number of members and the number of members connecting the two 
subgraphs is minimum. Figure 5(b) shows these two subgraphs. This approach is extensively 
employed in parallel computing. 

Example 5: We want to study a graph obtained by addition of two members to the product 
graph 5P ⊠ 4C . The Laplacian matrix of this graph will have the following form, and its 
eigenvalues can be calculated as follows: 

 
)C,B,A(FL mmmnmn =  

)5,1,5(GA mm −=   , )1,1,1(GB mm −−−=  and  )8,1,8(GC mm −=  
Since 
  

mmmmmm BI9C   ,BI6A +=+=  
Therefore 
 

mnmnmmmmmmn B)1,1,1(FI)3,0,2(F3)BI9,B,BI6(FL ⊗+⊗=++=  
 
We know that 

 m:1k   )
m
k2cos21()B( eig m =+−=
π  

 
Using Eq. (7) we have 
 

∑ ∑ ⊗=⊗  ))AB(eig())BA(eig( iiii  
 
Therefore 
 

)}1,1,1(FB)3,0,2(F3I{eig)L( eig nmnmmn ⊗+⊗=  
 
Since both  mI  and mB  commute in the multiplication, thus we have      
 

)}]1,1,1(F)
m
k2cos21()3,0,2(F3{eig[)L( eig nn

m

1kmn
π

+−∪=
=

 
 
As it can be observed from Figure 6, we have 12m =  and 8s = . Here the matrix ssL  has 

the following form: 

44ss IB;
81
18

A;)A,B,A(GL −=







−

−
==  

where 
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mBmBmA

)mC,mB,mA(nG





































=

 

 
For this matrix 1221 AAAA =  and therefore the calculation of the eigenvalues and the 

inverse of the matrix becomes feasible. In this example utilizing the relationships for 
calculating of eigenvalues (see [5]) one obtains 1001.12 =λ , while the exact answer is 

1027.12 =λ . 

 
Figure 6. The product graph 5P  ⊠ 4C  with two deleted members 

 
 

5. CONCLUDING REMARKS 
 

In this paper the analysis of those graphs are studied from which a regular model can be 
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extracted, and inversion is performed using the previously developed methods. 
The method developed in this paper is an iterative approach, and its important feature is 

that it performs the inversion and eigensolution on matrices smaller dimension than the matrix 
of the original model only once. This means that in the iterations of this method, only we have 
only numerical calculations and not matrix calculation. It is seen that after decomposition the 
dimensions of the matrices are reduced. 

In this way when a graph is irregular graph, has some a regular submodels, first the nodes 
corresponding to the irregular submodel and we show the corresponding Laplacian matrix by 
subscript m . According to dynamic condensation approach, the dimension of this matrix 
specifies the number of eigensolution problems which should be solved. Also the number of 
nodes in the regular part specifies the number of inversion that should be performed. In the 
process of inversion we face matrices which are in the form ( , , )t

nR A B B , and if this matrix 
contains n  blocks each block being of dimension l , then for inversion n  times the 
eigenvalues of dimension l  should be calculated, and also the inverse of the matrix 11 1I E L+  

or 1I VL U−− ′  of dimesion 2l  will be needed. 
Different types of graphs are studied in this paper. The examples consist of product graphs 

which either do not satisfy Eq. (5), or can be transformed into solvable forms by adding or 
removing some members. In another example, two graphs are connected to each other. Also 
some new product graphs together with the method of calculating their eigenvalues are 
provided. 
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